Recall:
$$\cdot \Psi(x) = \sum_{n \leq x} \lambda(n)$$

• PNT => $\Psi(x) \sim x$

• For $P_{\theta}(s) > 1$, we have $-\frac{Q^{1}}{2}(s) = \sum_{n \geq 2} \frac{Nn}{n^{s}}$

Truncated Perron: $C = 1 + \frac{1}{4\pi}$, $2 \in T \in 2x$
 $\Psi(x) = \frac{1}{2\pi i} \int_{C = 1}^{C+1} (-\frac{1}{2}(s)) \cdot x^{s} ds + O(x (\frac{1}{4}x)^{2})$

Next we prove an explicit formula for $\Psi(x)$:

Theorem (Explicit formula for $\Psi(x)$)

Let $2 \leq T \leq 2x$. Then

 $\Psi(x) = x - \sum_{n \geq 1} \frac{x^{s}}{n^{s}} + O(\frac{x (\frac{1}{4}x)^{2}}{n^{s}})$.

Note: This formula shows distribution of primes closely related to bention of zeros of $\frac{1}{2}(s)$.

Pf: Recall that from truncated Person formula, we have that for C= 1+ 1-, 25752X

 $U(x) = \frac{1}{2\pi i} \int_{-\pi}^{\pi} \left(-\frac{g'}{2} (s) \right) x^{s} ds + O\left(x \left(\frac{g(x)^{2}}{2} \right) \right)$ We want to estimate the integral 1 5x 2/5) ds by moving the line of integration and capting residue theorem. Therefore we need to find the poles of $\frac{2}{9}(s) \times s$ and compute the residues. X's has no poles in the complex plane 1 has a simple pole at 0, no other poles. 2/15) has a simple pale at 1 and a simple pole at each zero of Els). Residue at s=2 is lim(s-1) = -xResidue at S=0 is $\lim_{s\to0} x^s \frac{g'(s)}{g}(s) = \frac{g'(o)}{g}(o)$ (a constant) If g(s) has zeroe S with multiplicity m_{g} , then $\lim_{s\to S} (s-S) \frac{g'(s)}{s} = m_{g} \frac{\chi^{S}}{s}$.

We want to carefully choose our box of integration such that we avoid pules of 4'(s) x. T+1 C+iTz 17 2+ C(T+2)

17 41T C+iT From lest time, we know there are O(leg T) teros of Els) with half) CIT, T+13. There fore there exists T1 & IT, T+13 such that all zeros of of giss satisfy 1/hrs-Tz/-> Lat Con put absolute values

because if g is a zero, so is \$ We integrate & GIS along the box with comens c-iT1, C+iT1, - 2+iT1 and -1-iT1 This gives 1 (C-172 Syl) of + 5 x5 y/ 15) ds + 5 x5 y/ 15) ds + $+\int_{\zeta}^{\zeta} \frac{1}{x} \frac{1}{y} \frac{1}{y} \frac{ds}{ds} + \int_{\zeta}^{\zeta} \frac{1}{x} \frac{ds}{y} \frac{ds}{ds} = -x + \frac{1}{2} \frac{1}{10} + \frac{x}{2} \frac{1}{y} \frac{1}{10} + \frac{x}{2} \frac{1}{y} \frac{1}{10} + \frac{x}{2} \frac{1}{y} \frac{1}{10} \frac{1}{y} \frac{1}{y}$ From last time: \$\(\frac{1}{9} \log + i \, Tz \right) = O(\lag{1})^2 \right), \(\frac{1}{9} \log - \frac{1}{4} \log 0 \leq C \) Therefore Styllodsec X (lyT) cc X (lx)2

C+iTz land similarly for -4-172

-4-172 Now, Fritz Sylvyds 22 (lbgT) Todt 20 (lag T)3
-4+iTz

Thirty ver used $\frac{g'}{2}(-\frac{1}{4}+i+\frac{1}{4})$ from lest time.

This implies $1 - \int x \frac{g'(s)}{s} ds = -x + \frac{x^{s}}{s}$ $\frac{x^{s}}{s} = -x + \frac{x^{s}}{s}$ $\frac{x^{s}}{s} = -x + \frac{x^{s}}{s}$ $+\mathcal{O}\left(\frac{\log T}{\chi^{1/4}} + \frac{\chi}{\gamma} \left(\log \chi\right)^{2}\right).$ Finally, there are $O(\log T)$ zeros of with $T \subseteq 1 \text{ hm} s \mid C = T_z$, and each contributes $O(\frac{X}{T})$ Hence 5 x 2c X lg.T.

S:TE/ms/ETz T Also, Critz Sys) els 22 X log X. [xe used | 2 (c+i+) | = - 2 (0) = 5 1/m2 $2 = \frac{1}{n! \cdot c} = \frac{1}{2! \cdot 1! \cdot c} + \frac{\log x}{\log x}$ $\frac{1}{n! \cdot c} = \frac{1}{2! \cdot 1! \cdot c} + \frac{\log x}{\log x}$ Hence we have indeed $\psi(x) = -\frac{1}{2\pi i} \int_{-1}^{2\pi i} \frac{x}{x} \int_{-1}^{2\pi i} \frac{y}{x} \int_{-1}^{2\pi i} \frac{y}{x}$ $= X - \sum_{1 \le T_{Z}} \frac{x^{g}}{5} + O(\frac{x(6x)^{2}}{7} + \frac{(6T)^{3}}{x''^{4}})$

$$= x - \sum \frac{x^{s}}{s} + O\left(\frac{x(x)^{2}}{T}\right)$$

$$= 16ng/ET$$

The explicit formula shows that the distribution of primes is closely related to the location of zeros of ECS). Next we see what we obtain under the most optimistic assumption about the location of zeros (RH).

Theorem (Erron term under RH)

The Riemann hypothesis is true if and only if $U(X) = X + O(X^{\frac{1}{2} + \epsilon}), \forall \epsilon = 0.$

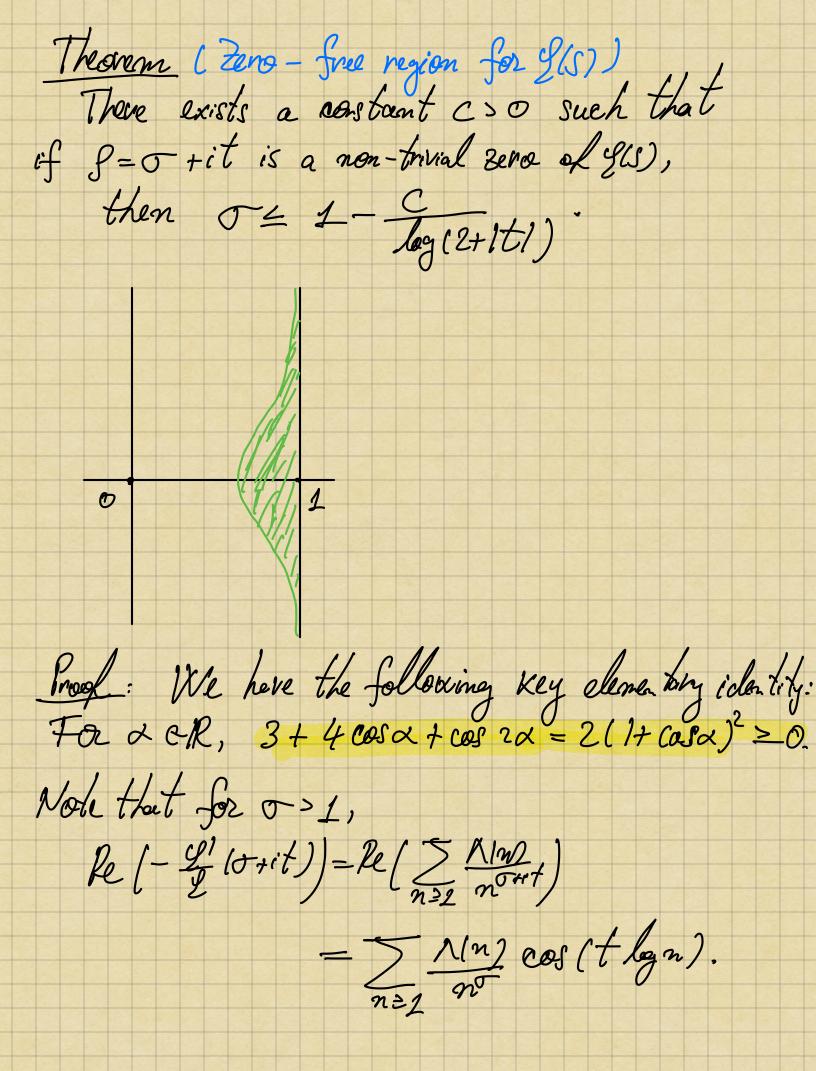
Proof: '=' Applying Explicit Formula with X=T, we have $U(x) = X - \sum_{S:1hS \not\in X} X + O((\log x)^2)$.

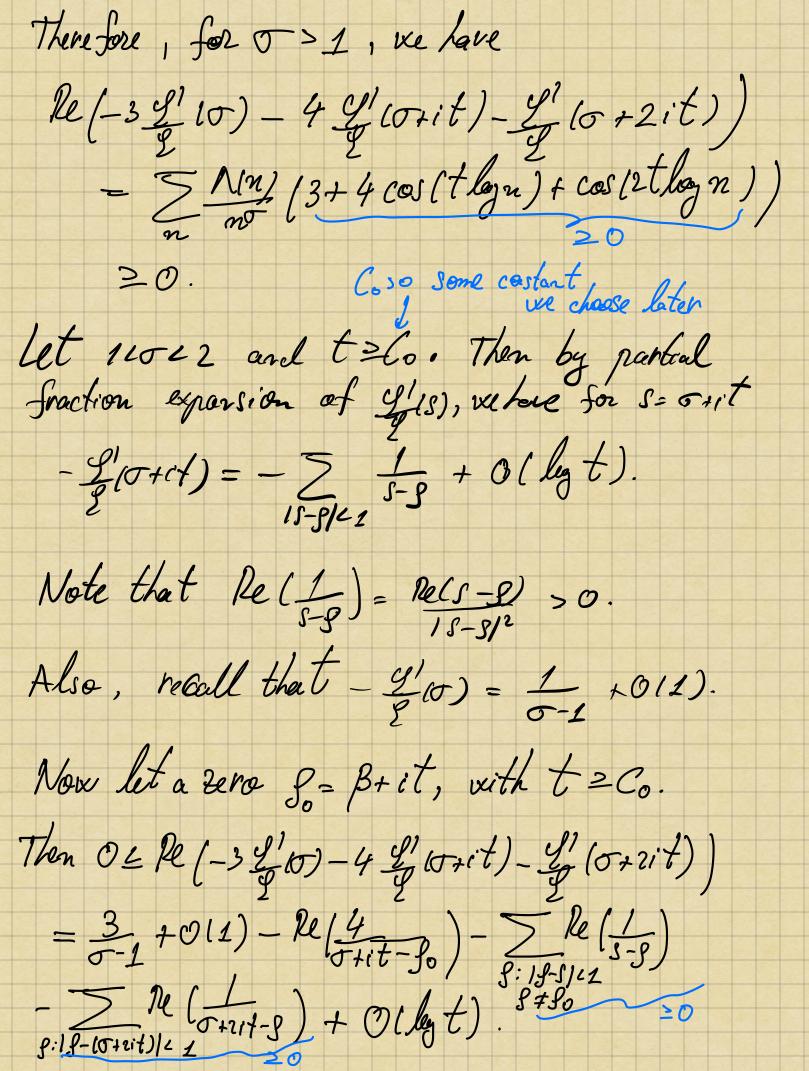
Now suppose all non-trivial zeros have $Re(g) = \frac{1}{2}$. For $n \ge 5$, there are $O(\log n)$ zeros with $1 \ln g \in n$, $n \ne 13$, and each one contributes $O(x'''^2)$.

Therefore $\psi(x) = x + O\left(1 + x^{1/2} > \frac{\log n}{n} + (\log x)^2\right)$.

 $= X + O(X^{1/2}(\log X)^2).$

"=" By partial summation (initially in Ress) > 2) $-\frac{g'(s)}{2} = \sum N(n)n^{-s} = s \int V(y)y^{-s-1}dy.$ Suppose $\Psi(x) = x + R(x)$, where R(x) = x + x = x $= \frac{1}{2} - \frac{2}{3} (s) = \frac{S}{S-1} + S \int \mathcal{R}(x) x^{-1/2} dx.$ Then integral is holomorphic for less > 1+2, so gist is zero-tree in this region. Unfortunately RH is completely out of reach, but we have some understanding for zero-free regions.





Hence there exists an absolub constant Ce such that

3-4-4-Ce lagt 20.

5-1-5-B Choose $\sigma = 1 + \frac{\delta}{\log t}$, for some $\delta > 0$. Then B 2 1 + Lyt - 40 (3+ C25) by t Let 5= 1, vee have \$2 1- 1502 legt (We choose Co such that g(1+it) +0, In 0416/46. Such Co exists because g(s) has pole at 1. 2(S)= 1 +0(L)